How to calculate radiometric dating

Knowing how an element decays alpha, beta, gamma can allow a person to shield their body appropriately from excess radiation. The quantity of radioactive nuclei at any given time will decrease to half as much in one half-life. Remember, the half-life is the time it takes for half of your sample, no matter how much you have, to remain.

The only difference is the length of time it takes for half of a sample to decay. Understand how decay and half life work to enable radiometric dating. Play a game that tests your ability to match the percentage of the dating element that remains to the age of the object. There are two types of half-life problems we will perform. One format involves calculating a mass amount of the original isotope.

Using the equation below, we can determine how much of the original isotope remains after a certain interval of time. The half-life of this isotope is 10 days.

Radiometric dating

For example, carbon has a half-life of 5, years and is used to measure the age of organic material. The ratio of carbon to carbon in living things remains constant while the organism is alive because fresh carbon is entering the organism whenever it consumes nutrients. When the organism dies, this consumption stops, and no new carbon is added to the organism.

As time goes by, the ratio of carbon to carbon in the organism gradually declines, because carbon radioactively decays while carbon is stable. Analysis of this ratio allows archaeologists to estimate the age of organisms that were alive many thousands of years ago. Along with stable carbon, radioactive carbon is taken in by plants and animals, and remains at a constant level within them while they are alive.

After death, the C decays and the C C ratio in the remains decreases. Comparing this ratio to the C C ratio in living organisms allows us to determine how long ago the organism lived and died. C dating does have limitations. For example, a sample can be C dating if it is approximately to 50, years old. Before or after this range, there is too little of the isotope to be detected. Substances must have obtained C from the atmosphere.


  • what are two limitations of using carbon-14 for dating objects?
  • Radiometric Dating.
  • dating singles online?
  • K-Ar dating calculation (video) | Khan Academy.

For this reason, aquatic samples cannot be effectively C dated. Lastly, accuracy of C dating has been affected by atmosphere nuclear weapons testing. So, we can write. After the passage of two half-lives only 0. This can only be done for 14 C, since we know N 0 from the atmospheric ratio, assumed to be constant through time.

Calculating Half-Life - Chemistry LibreTexts

For other systems we have to proceed further. The only problem is that we only know the number of daughter atoms now present, and some of those may have been present prior to the start of our clock. We can see how do deal with this if we take a particular case.

The neutron emits an electron to become a proton.

We still don't know 87 Sr 0 , the amount of 87 Sr daughter element initially present. Thus, 86 Sr is a stable isotope, and the amount of 86 Sr does not change through time. So, applying this simplification,. The reason for this is that Rb has become distributed unequally through the Earth over time.

5.7: Calculating Half-Life

For example the amount of Rb in mantle rocks is generally low, i. Thus we could tell whether the rock was derived from the mantle or crust be determining its initial Sr isotopic ratio as we discussed previously in the section on igneous rocks. Two isotopes of Uranium and one isotope of Th are radioactive and decay to produce various isotopes of Pb. The decay schemes are as follows. Note that the present ratio of.

If these two independent dates are the same, we say they are concordant. We can also construct a Concordia diagram, which shows the values of Pb isotopes that would give concordant dates.

Radioactive Dating

The Concordia curve can be calculated by defining the following:. Zircon has a high hardness 7. Zircon can also survive metamorphism. Chemically, zircon usually contains high amounts of U and low amounts of Pb, so that large amounts of radiogenic Pb are produced. Other minerals that also show these properties, but are less commonly used in radiometric dating are Apatite and sphene. Discordant dates will not fall on the Concordia curve.

Sometimes, however, numerous discordant dates from the same rock will plot along a line representing a chord on the Concordia diagram. Such a chord is called a discordia. We can also define what are called Pb-Pb Isochrons by combining the two isochron equations 7 and 8. Since we know that the , and assuming that the Pb and Pb dates are the same, then equation 11 is the equation for a family of lines that have a slope. The answer is about 6 billion years. This argument tells when the elements were formed that make up the Earth, but does not really give us the age of the Earth.

It does, however, give a maximum age of the Earth. Is this the age of the Earth? Lunar rocks also lie on the Geochron, at least suggesting that the moon formed at the same time as meteorites. Modern Oceanic Pb - i. Pb separated from continents and thus from average crust also plots on the Geochron, and thus suggests that the Earth formed at the same time as the meteorites and moon.

Navigation menu

Thus, our best estimate of the age of the Earth is 4. The initial ratio has particular importance for studying the chemical evolution of the Earth's mantle and crust, as we discussed in the section on igneous rocks. Since K is one of the 10 most abundant elements in the Earth's crust, the decay of 40 K is important in dating rocks. But this scheme is not used because 40 Ca can be present as both radiogenic and non-radiogenic Ca.

Since Ar is a noble gas, it can escape from a magma or liquid easily, and it is thus assumed that no 40 Ar is present initially.

Note that this is not always true. The age of a mineral is determined from the number of parent and daughter isotopes it contains. The greater the number of daughter isotopes, the older the mineral. Ages can be determined using the equation:. Round each answer to the nearest million years - example ,, years would be entered as ; 9,,, years would be entered as What is the half-life of 40 K? Round the answer to the nearest million years - as shown above Using the half-life calculated above, complete the Half-lives Elapsed column in the table.

admin